Robot arm reaching through neural inversions and reinforcement learning

نویسندگان

  • Pedro Martín
  • José del R. Millán
چکیده

We present a neural method that computes the inverse kinematics of any kind of robot manipulators, both redundant and non-redundant. Inverse kinematics solutions are obtained through the inversion of a neural network that has been previously trained to approximate the manipulator forward kinematics. The inversion provides difference vectors in the joint space from difference vectors in the workspace. Our differential inverse kinematics (DIV) approach can be viewed as a neural network implementation of the Jacobian transpose method for arm kinematic control that does not require previous knowledge of the arm forward kinematics. Redundancy can be exploited to obtain a special inverse kinematic solution that meets a particular constraint (e.g. joint limit avoidance) by inverting an additional neural network The usefulness of our DIV approach is further illustrated with sensor-based multilink manipulators that learn collision-free reaching motions in unknown environments. For this task, the neural controller has two modules: a reinforcement-based action generator (AG) and a DIV module that computes goal vectors in the joint space. The actions given by the AG are interpreted with regard to those goal vectors. © 2000 Published by Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Biological Robot Arm Motion through Reinforcement Learning

The present paper discusses an optimal control method of biological robot arm which has redundancy of the mapping from the control input to the task goal. The control input space is divided into a couple of subspaces according to a priority order depending on the progress and stability of learning. In the proposed method, the search noise which is required for reinforcement learning is restrict...

متن کامل

Biological cumulative learning through intrinsic motivations A simulated robotic study on the development of visually-guided reaching

This work aims to model the ability of biological organisms to achieve cumulative learning, i.e. learning increasingly more complex skills on the basis of simpler ones. In particular, we studied how a simulated kinematic robotic system composed of an arm and an eye can learn the ability to reach for an object on the basis of the ability to systematically look at the object, which, in our set-up...

متن کامل

Biological cumulative learning through intrinsic motivations : A simulated robotic study of the development of visually-guided reaching

This work aims to model the ability of biological organisms to achieve cumulative learning, i.e. to learn increasingly more complex skills on the basis of simpler ones. In particular, we studied how a simulated kinematic robotic system composed of an arm and an eye can learn the ability to reach for an object on the basis of the ability to systematically look at the object, which, in our set-up...

متن کامل

Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization

Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2000